Use integration by parts:
Let \( u = \ln(2x) \), \( dv = x \, dx \)
Then \( du = \frac{1}{x} \cdot 2 \cdot \frac{1}{2} = \frac{1}{x} \, dx \), and \( v = \frac{x^2}{2} \)
Apply the integration by parts formula:
\[
\int x \ln(2x) \, dx = \frac{x^2}{2} \ln(2x) - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx
\]
Simplify the remaining integral:
\[
\int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4}
\]
Final result:
\[
\int x \ln(2x) \, dx = \frac{x^2}{2} \ln(2x) - \frac{x^2}{4} + C
\]
\[
\boxed{ \frac{x^2}{2} \ln(2x) - \frac{x^2}{4} + C }
\]
Use trigonometric substitution:
Let \( x = 3\sin\theta \), so \( dx = 3\cos\theta\, d\theta \), and \( \sqrt{9 - x^2} = \sqrt{9 - 9\sin^2\theta} = 3\cos\theta \)
Final answer:
\[
\boxed{ \frac{9}{2} \sin^{-1}\left(\frac{x}{3}\right) - \frac{x\sqrt{9 - x^2}}{2} + C }
\]
First, simplify using polynomial division:
\[
\frac{x^2 + x + 1}{x + 1} = x + \frac{1}{x + 1}
\]
So the integral becomes:
\[
\int_0^1 \left( x + \frac{1}{x + 1} \right) dx = \int_0^1 x \, dx + \int_0^1 \frac{1}{x + 1} \, dx
\]
Evaluate each part:
\[
\int_0^1 x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2}
\]
\[
\int_0^1 \frac{1}{x + 1} \, dx = \left[ \ln|x + 1| \right]_0^1 = \ln(2) - \ln(1) = \ln 2
\]
Combine:
\[
\boxed{ \frac{1}{2} + \ln 2 }
\]
Factor the denominator:
\[
x^2 + x - 6 = (x + 3)(x - 2)
\]
Use partial fractions:
\[
\frac{4x + 5}{(x + 3)(x - 2)} = \frac{A}{x + 3} + \frac{B}{x - 2}
\]
Multiply both sides by \( (x + 3)(x - 2) \):
\[
4x + 5 = A(x - 2) + B(x + 3)
\]
Expand:
\[
4x + 5 = Ax - 2A + Bx + 3B = (A + B)x + (-2A + 3B)
\]
Match coefficients:
\[
A + B = 4,\quad -2A + 3B = 5
\]
Solve the system:
From \( A + B = 4 \Rightarrow A = 4 - B \)
Substitute into second equation:
\[
-2(4 - B) + 3B = 5 \Rightarrow -8 + 2B + 3B = 5 \Rightarrow 5B = 13 \Rightarrow B = \frac{13}{5},\quad A = \frac{7}{5}
\]
Now integrate:
\[
\int \frac{7/5}{x + 3} + \frac{13/5}{x - 2} \, dx = \frac{7}{5} \ln|x + 3| + \frac{13}{5} \ln|x - 2| + C
\]
Final answer:
\[
\boxed{ \frac{7}{5} \ln|x + 3| + \frac{13}{5} \ln|x - 2| + C }
\]
First simplify the integrand using partial fractions:
\[
\frac{3}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1}
\]
Multiply both sides by \( x(x + 1) \):
\[
3 = A(x + 1) + Bx = Ax + A + Bx = (A + B)x + A
\]
Match coefficients:
\[
A + B = 0,\quad A = 3 \Rightarrow B = -3
\]
So:
\[
\int_1^{\infty} \frac{3}{x(x + 1)} \, dx = \int_1^{\infty} \left( \frac{3}{x} - \frac{3}{x + 1} \right) dx
\]
Now take the limit:
\[
\lim_{t \to \infty} \left[ 3\ln|x| - 3\ln|x + 1| \right]_1^t = \lim_{t \to \infty} \left( 3\ln t - 3\ln(t + 1) - 3\ln 1 + 3\ln 2 \right)
\]
Use:
\[
\ln t - \ln(t + 1) = \ln\left(\frac{t}{t + 1}\right) \Rightarrow \ln\left(1 - \frac{1}{t + 1}\right) \to 0 \text{ as } t \to \infty
\]
So:
\[
\lim_{t \to \infty} 3 \ln\left(\frac{t}{t + 1}\right) + 3 \ln 2 = 0 + 3 \ln 2
\]
Final answer:
\[
\boxed{3 \ln 2}
\]
Use the disk method:
The radius of each disk is \( y = \sqrt{x} \), so:
\[
V = \pi \int_0^4 (\sqrt{x})^2 \, dx = \pi \int_0^4 x \, dx
\]
\[
\int_0^4 x \, dx = \left[ \frac{x^2}{2} \right]_0^4 = \frac{16}{2} = 8
\]
Multiply by \( \pi \):
\[
\boxed{8\pi}
\]
Use the shell method:
Shell radius = \( x \), shell height = \( x - x^2 \)
Find limits of intersection: \( x = x^2 \Rightarrow x(x - 1) = 0 \Rightarrow x = 0, 1 \)
Set up the integral:
\[
V = 2\pi \int_0^1 x(x - x^2) \, dx = 2\pi \int_0^1 (x^2 - x^3) \, dx
\]
\[
\int_0^1 x^2 - x^3 \, dx = \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}
\]
Multiply by \( 2\pi \):
\[
\boxed{ \frac{\pi}{6} }
\]
This is the alternating harmonic series.
The terms \( \frac{1}{n} \) decrease and go to zero, so by the Alternating Series Test, it converges.
However, the harmonic series \( \sum \frac{1}{n} \) diverges, so it does not converge absolutely.
\[
\boxed{\text{Converges conditionally}}
\]
Use the integral test:
\[
\int_2^\infty \frac{1}{x(\ln x)^2} dx
\]
Let \( u = \ln x \Rightarrow du = \frac{1}{x} dx \)
\[
\int_2^\infty \frac{1}{x(\ln x)^2} dx = \int_{\ln 2}^\infty \frac{1}{u^2} du = \left[ -\frac{1}{u} \right]_{\ln 2}^\infty = \frac{1}{\ln 2}
\]
Converges. So does the series:
\[
\boxed{\text{Converges}}
\]